Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Atmos ; 4(2): 265-274, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371605

RESUMO

Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.

2.
Science ; 382(6676): 1308-1314, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096284

RESUMO

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3 is generally low, and H2SO4 is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4 and HIOx during atmospheric particle nucleation. We found that HIOx greatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3 strongly binds with H2SO4 in charged clusters so they drive particle nucleation synergistically. Second, HIO2 substitutes for NH3, forming strongly bound H2SO4-HIO2 acid-base pairs in molecular clusters. Global observations imply that HIOx is enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.

3.
Environ Sci Atmos ; 1(6): 434-448, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34604755

RESUMO

Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and ß-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.

4.
J Aerosol Sci ; 152: 105693, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078030

RESUMO

The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, the potential risk of reintroducing the infection source to humans and the environment must be resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, had SARS-CoV-2 in their exhaled breath (~105 RNA copies/m3). Although fewer surface swabs (3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3-8 viruses/cm2). Three of the air samples (n = 44) including those collected using a robot-assisted sampler were detected positive by a digital PCR with a concentration level of 9-219 viruses/m3. RT-PCR diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated ~1400 RNA copies per minute into the air. Direct surface contact might not represent a major transmission route, and lower positive rate of air sample (6.8%) was likely due to natural ventilation (1.6-3.3 m/s) and regular disinfection practices. While there is a critical need for strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use of breath sample as a supplement specimen could further guard the hospital discharge to ensure the safety of the public and minimize the pandemic re-emergence risk.

5.
Clin Infect Dis ; 72(10): e652-e654, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32857833

RESUMO

Coronavirus disease 2019 (COVID-19) patients exhaled millions of severe acute respiratory syndrome coronavirus 2 RNA copies per hour, which plays an important role in COVID-19 transmission. Exhaled breath had a higher positive rate (26.9%, n = 52) than surface (5.4%, n = 242) and air (3.8%, n = 26) samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Sistema Respiratório
6.
Atmos Chem Phys ; 20(13): 7645-7665, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33273899

RESUMO

Aerosol-cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (N d). Even though rigorous first-principle approaches exist to calculate N d, the cloud and aerosol research community also relies on empirical approaches such as relating N d to aerosol mass concentration. Here we analyze relationships between N d and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log-log linear regressions were performed to predict N d using chemical composition. Single-species regressions reveal that the species that best predicts N d is total sulfate ( R adj 2 = 0.40 ). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with N d was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition-N d correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between N d with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with N d for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with N d at cloud top, whereas iron and oxalate correlated best with N d at cloud base.

7.
J Geophys Res Atmos ; 124(22): 12301-12318, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33274175

RESUMO

This study reports on airborne measurements of stratocumulus cloud properties under varying degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from five total airborne campaigns based in Marina, California, with two of them including influence from wildfires in different areas along the coast of the western United States. The results indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (N d) as compared to respective above-cloud aerosol data. Given that the majority of BB particles resided above cloud tops, this is an important consideration for future work in the region as the data indicate that the subcloud BB particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB-impacted clouds as compared to non-BB clouds due, at least partly, to less hygroscopic aerosols. Relationships between N d and either droplet effective radius or drizzle rate are preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for varying degrees of BB influence as long as N d is known. Lastly, the composition of both droplet residual particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences observed for different fire sources stemming largely from effects of plume aging time and dust influence.

9.
Sci Data ; 5: 180026, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485627

RESUMO

Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

10.
Sci Rep ; 8(1): 934, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343860

RESUMO

Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO2, NO2, PM2.5, and PM10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO2, NO2, PM2.5, and PM10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Emissões de Veículos/análise , Pequim , Cidades , Monitoramento Ambiental/métodos , Centrais Elétricas
11.
J Geophys Res Atmos ; 123(7): 3704-3723, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32025449

RESUMO

This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2 - and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO4 2-, NO3 -, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

12.
Science ; 354(6316): 1119-1124, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789796

RESUMO

Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

13.
Environ Sci Technol ; 50(22): 12241-12249, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27731989

RESUMO

The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.


Assuntos
Compostos Férricos , Ácido Oxálico , Aerossóis , Oxirredução , Estudos de Tempo e Movimento
14.
Proc Natl Acad Sci U S A ; 113(43): 12053-12058, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790989

RESUMO

The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.


Assuntos
Aerossóis/análise , Atmosfera/análise , Modelos Estatísticos , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Clima , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Desenvolvimento Industrial/história , Incerteza
15.
Nature ; 533(7604): 521-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225125

RESUMO

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Assuntos
Aerossóis/química , Atmosfera/química , Mudança Climática , Íons/química , Oxigênio/química , Material Particulado/química , Poluição do Ar/análise , Monoterpenos Bicíclicos , Radiação Cósmica , Atividades Humanas , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Teoria Quântica , Ácidos Sulfúricos/análise , Volatilização
16.
Nature ; 533(7604): 527-31, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225126

RESUMO

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

17.
Nat Commun ; 7: 11594, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197574

RESUMO

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

18.
Proc Natl Acad Sci U S A ; 112(46): 14168-73, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578760

RESUMO

Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

19.
Opt Lett ; 40(17): 4106-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368723

RESUMO

We propose an on-chip integrated differential optical microring refractive index sensing platform which leverages laminar flow conditions. Close spacing between a sensing and a reference resonator, and sharing the same microfluidic channel allows the two resonators to experience similar environmental disturbances, such as temperature fluctuations and fluidic-induced transients, achieving reliable and sensitive sensing performance. We obtain a noise floor of 80.0 MHz (0.3 pm) and a bulk refractive index sensitivity of 17.0 THz per refractive index unit (RIU) (64.2 nm/RIU), achieving a limit of detection of 1.4×10(-5) RIU in a 30 min and an 8°C window.


Assuntos
Dispositivos Lab-On-A-Chip , Refratometria/instrumentação , Fenômenos Ópticos , Fatores de Tempo , Água
20.
Environ Sci Technol ; 49(19): 11485-91, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26339802

RESUMO

The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.


Assuntos
Aerossóis/química , Atmosfera , Difusão , Gases , Modelos Teóricos , Tamanho da Partícula , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...